Kernels
GaussianProcesses.Const
— TypeConst <: Kernel
Constant kernel
with signal standard deviation $σ$.
GaussianProcesses.Const
— MethodConstant kernel function
Const(lσ::T)
Arguments
lσ::Real
: signal standard deviation (given on log scale)
GaussianProcesses.Lin
— MethodLin(ll::Union{Real,Vector{Real}})
Create linear kernel with length scale exp.(ll)
.
GaussianProcesses.LinArd
— TypeLinArd <: Kernel
ARD linear kernel (covariance)
with length scale $ℓ = (ℓ₁, ℓ₂, …)$ and $L = diag(ℓ₁, ℓ₂, …)$.
GaussianProcesses.LinArd
— MethodLinear ARD Covariance Function
LinArd(ll::Vector{T})
Arguments
ll::Vector{Real}
: vector of length scales (given on log scale)
GaussianProcesses.LinIso
— TypeLinIso <: Kernel
Isotropic linear kernel (covariance)
with length scale $ℓ$.
GaussianProcesses.LinIso
— MethodLinear Isotropic Covariance Function
LinIso(ll::T)
Arguments
ll::Real
: length scale (given on log scale)
GaussianProcesses.Masked
— TypeMasked{K<:Kernel} <: Kernel
A wrapper for kernels so that they are only applied along certain dimensions.
This is similar to the active_dims
kernel attribute in the python GPy package and to the covMask
function in the matlab gpml package.
The implementation is very simple: any function of the kernel that takes an X::Matrix
input is delegated to the wrapped kernel along with a view of X
that only includes the active dimensions.
GaussianProcesses.Matern
— MethodMatern(ν::Real, ll::Union{Real,Vector{Real}}, lσ::Real)
Create Matérn kernel of type ν
(i.e. ν = 1/2
, ν = 3/2
, or ν = 5/2
) with length scale exp.(ll)
and signal standard deviation exp(σ)
.
See also Mat12Iso
, Mat12Ard
, Mat32Iso
, Mat32Ard
, Mat52Iso
, and Mat52Ard
.
GaussianProcesses.Mat12Ard
— TypeMat12Ard <: MaternARD
ARD Matern 1/2 kernel (covariance)
with length scale $ℓ = (ℓ₁, ℓ₂, …)$ and signal standard deviation $σ$ where $L = diag(ℓ₁, ℓ₂, …)$.
GaussianProcesses.Mat12Ard
— MethodMatern 1/2 ARD covariance Function
Mat12Ard(ll::Vector{T}, lσ::T)
Arguments
ll::Vector{Real}
: vector of length scales (given on log scale)lσ::Real
: signal standard deviation (given on log scale)
GaussianProcesses.Mat12Iso
— TypeMat12Iso <: MaternISO
Isotropic Matern 1/2 kernel (covariance)
with length scale $ℓ$ and signal standard deviation $σ$.
GaussianProcesses.Mat12Iso
— MethodMatern 1/2 isotropic covariance Function
Mat12Iso(ll::T, lσ::T)
Arguments
ll::Real
: length scale (given on log scale)lσ::Real
: signal standard deviation (given on log scale)
GaussianProcesses.Mat32Ard
— TypeMat32Ard <: MaternARD
ARD Matern 3/2 kernel (covariance)
with length scale $ℓ = (ℓ₁, ℓ₂, …)$ and signal standard deviation $σ$ where $L = diag(ℓ₁, ℓ₂, …)$.
GaussianProcesses.Mat32Ard
— MethodMatern 3/2 ARD covariance function
Mat32Ard(ll::Vector{T}, lσ::T)
Arguments
ll::Vector{Real}
: vector of length scales (given on log scale)lσ::Real
: signal standard deviation (given on log scale)
GaussianProcesses.Mat32Iso
— TypeMat32Iso <: MaternIso
Isotropic Matern 3/2 kernel (covariance)
with length scale $ℓ$ and signal standard deviation $σ$.
GaussianProcesses.Mat32Iso
— MethodMatern 3/2 isotropic covariance function
Mat32Iso(ll::T, lσ::T)
Arguments
ll::Real
: length scale (given on log scale)lσ::Real
: signal standard deviation (given on log scale)
GaussianProcesses.Mat52Ard
— TypeMat52Ard <: MaternARD
ARD Matern 5/2 kernel (covariance)
with length scale $ℓ = (ℓ₁, ℓ₂, …)$ and signal standard deviation $σ$ where $L = diag(ℓ₁, ℓ₂, …)$.
GaussianProcesses.Mat52Ard
— MethodMatern 5/2 ARD covariance Function
Mat52Ard(ll::Vector{Real}, lσ::Real)
Arguments
ll::Vector{Real}
: vector of length scales (given on log scale)lσ::Real
: signal standard deviation (given on log scale)
GaussianProcesses.Mat52Iso
— TypeMat52Iso <: MaternIso
Isotropic Matern 5/2 kernel (covariance)
with length scale $ℓ$ and signal standard deviation $σ$.
GaussianProcesses.Mat52Iso
— MethodMatern 5/2 isotropic covariance function
Mat52Iso(ll::Real, lσ::Real)
Arguments
ll::Real
: length scale (given on log scale)lσ::Real
: signal standard deviation (given on log scale)
GaussianProcesses.Noise
— TypeNoise <: Kernel
Noise kernel (covariance)
where $δ$ is the Kronecker delta function and $σ$ is the signal standard deviation.
GaussianProcesses.Noise
— MethodWhite Noise kernel
Noise(lσ::Real)
Arguments
lσ::Real
: signal standard deviation (given on log scale)
GaussianProcesses.Periodic
— TypePeriodic <: Isotropic{Euclidean}
Periodic kernel (covariance)
with length scale $ℓ$, signal standard deviation $σ$, and period $p$.
GaussianProcesses.Periodic
— MethodPeriodic kernel function
Periodic(ll::Real, lσ::Real, lp::Real)
Arguments
ll::Real
: length scale (given on log scale)lσ::Real
: signal standard deviation (given on log scale)lp::Real
: periodicity parameter (given on log scale)
GaussianProcesses.Poly
— TypePoly <: Kernel
Polynomial kernel (covariance)
with signal standard deviation $σ$, additive constant $c$, and degree $d$.
GaussianProcesses.Poly
— MethodPolynomial kernel function
Poly(lc::Real, lσ::Real, deg::Int)
Arguments
lc::Real
: additive constant (given on log scale)lσ::Real
: signal standard deviation (given on log scale)deg::Int
: degree of polynomial
GaussianProcesses.RQ
— MethodRQ(ll::Union{Real,Vector{Real}}, lσ::Real, lα::Real)
Create Rational Quadratic kernel with length scale exp.(ll)
, signal standard deviation exp(lσ)
, and shape parameter exp(lα)
.
GaussianProcesses.RQArd
— TypeRQArd <: StationaryARD{WeightedSqEuclidean}
ARD Rational Quadratic kernel (covariance)
with length scale $ℓ = (ℓ₁, ℓ₂, …)$, signal standard deviation $σ$, and shape parameter $α$ where $L = diag(ℓ₁, ℓ₂, …)$.
GaussianProcesses.RQArd
— MethodRational Quadratic ARD Covariance Function
RQArd(ll::Vector{Real}, lσ::Real, lα::Real)
Arguments
ll::Vector{Real}
: vector of length scales (given on log scale)lσ::Real
: signal standard deviation (given on log scale)lα::Real
: shape parameter (given on log scale)
GaussianProcesses.RQIso
— TypeRQIso <: Isotropic{SqEuclidean}
Isotropic Rational Quadratic kernel (covariance)
with length scale $ℓ$, signal standard deviation $σ$, and shape parameter $α$.
GaussianProcesses.RQIso
— MethodRational Quadratic Isotropic Covariance Function
RQIso(ll:T, lσ::T, lα::T)
Arguments
ll::Real
: length scale (given on log scale)lσ::Real
: signal standard deviation (given on log scale)lα::Real
: shape parameter (given on log scale)
GaussianProcesses.SE
— MethodSE(ll::Union{Real,Vector{Real}}, lσ::Real)
Create squared exponential kernel with length scale exp.(ll)
and signal standard deviation exp(lσ)
.
GaussianProcesses.SEArd
— TypeSEArd <: StationaryARD{WeightedSqEuclidean}
ARD Squared Exponential kernel (covariance)
with length scale $ℓ = (ℓ₁, ℓ₂, …)$ and signal standard deviation $σ$ where $L = diag(ℓ₁, ℓ₂, …)$.
GaussianProcesses.SEArd
— MethodSquared Exponential Function with ARD
SEArd(ll::Vector{Real}, lσ::Real)
Arguments
ll::Vector{Real}
: vector of length scales (given on log scale)lσ::Real
: signal standard deviation (given on log scale)
GaussianProcesses.SEIso
— TypeSEIso <: Isotropic{SqEuclidean}
Isotropic Squared Exponential kernel (covariance)
with length scale $ℓ$ and signal standard deviation $σ$.
GaussianProcesses.SEIso
— MethodSquared Exponential kernel function
SEIso(ll::T, lσ::T)
Arguments:
ll::Real
: length scale (given on log scale)lσ::Real
: signal standard deviation (given on log scale)
GaussianProcesses.EmptyData
— TypeEmptyData <: KernelData
Default empty KernelData
.
GaussianProcesses.KernelData
— TypeKernelData
Data to be used with a kernel object to calculate a covariance matrix, which is independent of kernel hyperparameters.
See also EmptyData
.
GaussianProcesses.cov!
— Functioncov!(cK::AbstractMatrix, k::Kernel, X1::AbstractMatrix, X2::AbstractMatrix)
Like cov(k, X1, X2)
, but stores the result in cK
rather than a new matrix.
Statistics.cov
— Functioncov(k::Kernel, X::AbstractMatrix[, data::KernelData = EmptyData()])
Create covariance matrix from kernel k
, matrix of observations X
, where each column is an observation, and kernel data data
constructed from input observations.
Statistics.cov
— Functioncov(k::Kernel, X1::AbstractMatrix, X2::AbstractMatrix)
Create covariance matrix from kernel k
and matrices of observations X1
and X2
, where each column is an observation.