Kernels
GaussianProcesses.Const — TypeConst <: KernelConstant kernel
with signal standard deviation $σ$.
GaussianProcesses.Const — MethodConstant kernel function
Const(lσ::T)Arguments
lσ::Real: signal standard deviation (given on log scale)
GaussianProcesses.Lin — MethodLin(ll::Union{Real,Vector{Real}})Create linear kernel with length scale exp.(ll).
GaussianProcesses.LinArd — TypeLinArd <: KernelARD linear kernel (covariance)
with length scale $ℓ = (ℓ₁, ℓ₂, …)$ and $L = diag(ℓ₁, ℓ₂, …)$.
GaussianProcesses.LinArd — MethodLinear ARD Covariance Function
LinArd(ll::Vector{T})Arguments
ll::Vector{Real}: vector of length scales (given on log scale)
GaussianProcesses.LinIso — TypeLinIso <: KernelIsotropic linear kernel (covariance)
with length scale $ℓ$.
GaussianProcesses.LinIso — MethodLinear Isotropic Covariance Function
LinIso(ll::T)Arguments
ll::Real: length scale (given on log scale)
GaussianProcesses.Masked — TypeMasked{K<:Kernel} <: KernelA wrapper for kernels so that they are only applied along certain dimensions.
This is similar to the active_dims kernel attribute in the python GPy package and to the covMask function in the matlab gpml package.
The implementation is very simple: any function of the kernel that takes an X::Matrix input is delegated to the wrapped kernel along with a view of X that only includes the active dimensions.
GaussianProcesses.Matern — MethodMatern(ν::Real, ll::Union{Real,Vector{Real}}, lσ::Real)Create Matérn kernel of type ν (i.e. ν = 1/2, ν = 3/2, or ν = 5/2) with length scale exp.(ll) and signal standard deviation exp(σ).
See also Mat12Iso, Mat12Ard, Mat32Iso, Mat32Ard, Mat52Iso, and Mat52Ard.
GaussianProcesses.Mat12Ard — TypeMat12Ard <: MaternARDARD Matern 1/2 kernel (covariance)
with length scale $ℓ = (ℓ₁, ℓ₂, …)$ and signal standard deviation $σ$ where $L = diag(ℓ₁, ℓ₂, …)$.
GaussianProcesses.Mat12Ard — MethodMatern 1/2 ARD covariance Function
Mat12Ard(ll::Vector{T}, lσ::T)Arguments
ll::Vector{Real}: vector of length scales (given on log scale)lσ::Real: signal standard deviation (given on log scale)
GaussianProcesses.Mat12Iso — TypeMat12Iso <: MaternISOIsotropic Matern 1/2 kernel (covariance)
with length scale $ℓ$ and signal standard deviation $σ$.
GaussianProcesses.Mat12Iso — MethodMatern 1/2 isotropic covariance Function
Mat12Iso(ll::T, lσ::T)Arguments
ll::Real: length scale (given on log scale)lσ::Real: signal standard deviation (given on log scale)
GaussianProcesses.Mat32Ard — TypeMat32Ard <: MaternARDARD Matern 3/2 kernel (covariance)
with length scale $ℓ = (ℓ₁, ℓ₂, …)$ and signal standard deviation $σ$ where $L = diag(ℓ₁, ℓ₂, …)$.
GaussianProcesses.Mat32Ard — MethodMatern 3/2 ARD covariance function
Mat32Ard(ll::Vector{T}, lσ::T)Arguments
ll::Vector{Real}: vector of length scales (given on log scale)lσ::Real: signal standard deviation (given on log scale)
GaussianProcesses.Mat32Iso — TypeMat32Iso <: MaternIsoIsotropic Matern 3/2 kernel (covariance)
with length scale $ℓ$ and signal standard deviation $σ$.
GaussianProcesses.Mat32Iso — MethodMatern 3/2 isotropic covariance function
Mat32Iso(ll::T, lσ::T)Arguments
ll::Real: length scale (given on log scale)lσ::Real: signal standard deviation (given on log scale)
GaussianProcesses.Mat52Ard — TypeMat52Ard <: MaternARDARD Matern 5/2 kernel (covariance)
with length scale $ℓ = (ℓ₁, ℓ₂, …)$ and signal standard deviation $σ$ where $L = diag(ℓ₁, ℓ₂, …)$.
GaussianProcesses.Mat52Ard — MethodMatern 5/2 ARD covariance Function
Mat52Ard(ll::Vector{Real}, lσ::Real)Arguments
ll::Vector{Real}: vector of length scales (given on log scale)lσ::Real: signal standard deviation (given on log scale)
GaussianProcesses.Mat52Iso — TypeMat52Iso <: MaternIsoIsotropic Matern 5/2 kernel (covariance)
with length scale $ℓ$ and signal standard deviation $σ$.
GaussianProcesses.Mat52Iso — MethodMatern 5/2 isotropic covariance function
Mat52Iso(ll::Real, lσ::Real)Arguments
ll::Real: length scale (given on log scale)lσ::Real: signal standard deviation (given on log scale)
GaussianProcesses.Noise — TypeNoise <: KernelNoise kernel (covariance)
where $δ$ is the Kronecker delta function and $σ$ is the signal standard deviation.
GaussianProcesses.Noise — MethodWhite Noise kernel
Noise(lσ::Real)Arguments
lσ::Real: signal standard deviation (given on log scale)
GaussianProcesses.Periodic — TypePeriodic <: Isotropic{Euclidean}Periodic kernel (covariance)
with length scale $ℓ$, signal standard deviation $σ$, and period $p$.
GaussianProcesses.Periodic — MethodPeriodic kernel function
Periodic(ll::Real, lσ::Real, lp::Real)Arguments
ll::Real: length scale (given on log scale)lσ::Real: signal standard deviation (given on log scale)lp::Real: periodicity parameter (given on log scale)
GaussianProcesses.Poly — TypePoly <: KernelPolynomial kernel (covariance)
with signal standard deviation $σ$, additive constant $c$, and degree $d$.
GaussianProcesses.Poly — MethodPolynomial kernel function
Poly(lc::Real, lσ::Real, deg::Int)Arguments
lc::Real: additive constant (given on log scale)lσ::Real: signal standard deviation (given on log scale)deg::Int: degree of polynomial
GaussianProcesses.RQ — MethodRQ(ll::Union{Real,Vector{Real}}, lσ::Real, lα::Real)Create Rational Quadratic kernel with length scale exp.(ll), signal standard deviation exp(lσ), and shape parameter exp(lα).
GaussianProcesses.RQArd — TypeRQArd <: StationaryARD{WeightedSqEuclidean}ARD Rational Quadratic kernel (covariance)
with length scale $ℓ = (ℓ₁, ℓ₂, …)$, signal standard deviation $σ$, and shape parameter $α$ where $L = diag(ℓ₁, ℓ₂, …)$.
GaussianProcesses.RQArd — MethodRational Quadratic ARD Covariance Function
RQArd(ll::Vector{Real}, lσ::Real, lα::Real)Arguments
ll::Vector{Real}: vector of length scales (given on log scale)lσ::Real: signal standard deviation (given on log scale)lα::Real: shape parameter (given on log scale)
GaussianProcesses.RQIso — TypeRQIso <: Isotropic{SqEuclidean}Isotropic Rational Quadratic kernel (covariance)
with length scale $ℓ$, signal standard deviation $σ$, and shape parameter $α$.
GaussianProcesses.RQIso — MethodRational Quadratic Isotropic Covariance Function
RQIso(ll:T, lσ::T, lα::T)Arguments
ll::Real: length scale (given on log scale)lσ::Real: signal standard deviation (given on log scale)lα::Real: shape parameter (given on log scale)
GaussianProcesses.SE — MethodSE(ll::Union{Real,Vector{Real}}, lσ::Real)Create squared exponential kernel with length scale exp.(ll) and signal standard deviation exp(lσ).
GaussianProcesses.SEArd — TypeSEArd <: StationaryARD{WeightedSqEuclidean}ARD Squared Exponential kernel (covariance)
with length scale $ℓ = (ℓ₁, ℓ₂, …)$ and signal standard deviation $σ$ where $L = diag(ℓ₁, ℓ₂, …)$.
GaussianProcesses.SEArd — MethodSquared Exponential Function with ARD
SEArd(ll::Vector{Real}, lσ::Real)Arguments
ll::Vector{Real}: vector of length scales (given on log scale)lσ::Real: signal standard deviation (given on log scale)
GaussianProcesses.SEIso — TypeSEIso <: Isotropic{SqEuclidean}Isotropic Squared Exponential kernel (covariance)
with length scale $ℓ$ and signal standard deviation $σ$.
GaussianProcesses.SEIso — MethodSquared Exponential kernel function
SEIso(ll::T, lσ::T)Arguments:
ll::Real: length scale (given on log scale)lσ::Real: signal standard deviation (given on log scale)
GaussianProcesses.EmptyData — TypeEmptyData <: KernelDataDefault empty KernelData.
GaussianProcesses.KernelData — TypeKernelDataData to be used with a kernel object to calculate a covariance matrix, which is independent of kernel hyperparameters.
See also EmptyData.
GaussianProcesses.cov! — Functioncov!(cK::AbstractMatrix, k::Kernel, X1::AbstractMatrix, X2::AbstractMatrix)Like cov(k, X1, X2), but stores the result in cK rather than a new matrix.
Statistics.cov — Functioncov(k::Kernel, X::AbstractMatrix[, data::KernelData = EmptyData()])Create covariance matrix from kernel k, matrix of observations X, where each column is an observation, and kernel data data constructed from input observations.
Statistics.cov — Functioncov(k::Kernel, X1::AbstractMatrix, X2::AbstractMatrix)Create covariance matrix from kernel k and matrices of observations X1 and X2, where each column is an observation.